Как повысить КПД электродвигателя: выбираем решение

Как повысить КПД электродвигателя: выбираем решение

В настоящее время электромеханические преобразователи считаются одними из самых эффективных технических решений, однако в процессе их эксплуатации возникает ряд проблем. К ним относятся потери энергии по различным причинам - магнитные, электрические и механические – которые сопровождаются тепловым излучением, а также шумом и вибрацией. Эти процессы являются результатом трения элементов, перемагничивания в магнитном поле сердечника якоря электродвигателя, а также скачков нагрузок. Но возможно ли сократить так называемые "утечки" и повысить КПД? Об этом мы поговорим в данной статье.

Современные методы для улучшения КПД асинхронных двигателей

По общепринятой классификации, электрические машины бывают синхронными и асинхронными. Синхронные машины имеют одинаковую частоту вращения ротора и магнитного поля, тогда как магнитное поле асинхронных машин вращается с более высокой скоростью, чем ротор. Асинхронные электродвигатели более популярны и пользуются более широким распространением: около 90% всех электродвигателей на планете являются асинхронными. Они используются во многих отраслях, включая промышленность, сельское хозяйство и сферу ЖКХ. Это происходит потому, что такие механизмы просты в производстве, достаточно надежны, экономичны и не требуют больших затрат на эксплуатацию. Кроме того, КПД асинхронных электродвигателей гораздо выше, чем у синхронных.

Однако эта техника также имеет существенные недостатки. Например, высокий пусковой ток, недостаточный пусковой момент, несогласованность механического момента на валу привода с механической нагрузкой (что может привести к резкому увеличению силы тока и избыточным механическим нагрузкам при запуске и снижению КПД в периоды пониженной нагрузки), а также невозможность точной регулировки скорости работы механизма. Все эти факторы значительно снижают эффективность работы системы.

В настоящее время производители стремятся улучшить КПД асинхронных электродвигателей. Существуют различные методы для достижения этой цели. Использование частотно-управляемых преобразователей позволяет регулировать частоту вращения мотора и величину подаваемого напряжения, что позволяет снизить пусковой ток и улучшить точность регулировки скорости. Кроме того, установка встроенного электронного устройства контроля и регулирования может существенно повысить КПД системы. Новые технологии и материалы также могут улучшить работу электродвигателей.

Оптимизируем работу промышленного оборудования с помощью контроллеров-оптимизаторов. Эти устройства способны повысить КПД дробилок, вентиляторов, ленточных транспортеров, обрабатывающих станков, крутильных агрегатов, лебедок и другого оборудования, используемого в различных сферах: промышленности, сельском хозяйстве и ЖКХ.

Кроме этого, контроллеры-оптимизаторы могут предотвратить перегрузки кронштейнов при запуске мешалок, нейтрализовать гидроудары в трубопроводах, а также обеспечить плавный запуск тяжелого и очень тяжелого оборудования. Обычные устройства плавного пуска не всегда справляются с этой задачей.

Ценовая политика

Контроллеры-оптимизаторы являются эффективным средством увеличения КПД оборудования и в то же время они значительно более доступны по цене, чем преобразователи. По сравнению со своими аналогами, устройства от отечественных производителей обладают ценовым преимуществом: устройство мощностью 90 кВт можно приобрести по цене от 90 до 140 тысяч рублей.

Контроллеры-оптимизаторы – это устройства, которые быстро реагируют на изменение напряжения и снижают расходы электроэнергии на 30-40%. Они также помогают уменьшить воздействие реактивной нагрузки на сеть, повысить КПД привода, а также экономят деньги на конденсаторных компенсирующих устройствах. Применение контроллеров-оптимизаторов также помогает продлить срок службы оборудования и повышает экологичность производства.

Важным преимуществом контроллеров-оптимизаторов является их доступная цена в сравнении с преобразователями частоты. Однако, необходимо учитывать, что контроллеры-оптимизаторы не могут использоваться в случаях, когда требуется изменять скорость вращения электродвигателя.

Таким образом, контроллеры-оптимизаторы оперативно реагирует на изменения напряжения, экономят электроэнергию, уменьшают реактивную нагрузку на сеть и повышают КПД привода. Они также помогают сократить расходы на конденсаторные компенсирующие устройства, продлить срок службы оборудованию и повысить экологичность производства. Незаменимы они только в тех случаях, когда необходимо изменять скорость вращения электродвигателя.

Выбираем наилучший вариант для повышения КПД

Для того чтобы повысить КПД двигателя того или иного электропривода, необходимо выбрать соответствующее устройство, учитывая особенности работы оборудования.

Если требуется изменение скорости привода, то оптимальным решением будет покупка преобразователя частоты. В случае, если скорость вращения двигателя не требуется изменять или это делать неохота, то лучше выбрать контроллеры-оптимизаторы.

Более доступная стоимость данных устройств - это их главное преимущество по сравнению с «частотниками».

На заметку: Как повысить КПД электродвигателя

КПД – ключевой фактор для эффективности работы электродвигателя. Его наиболее заметные влияющие факторы – степень загрузки по отношению к номинальной, конструкция и модель, степень износа, отклонение напряжения в сети от номинального. Также следует помнить, что перемотка электродвигателя может привести к снижению его КПД.

Для повышения эффективности работы электропривода, важно обеспечивать его загрузку на уровне не менее 75%, увеличивать коэффициент мощности, регулировать напряжение и частоту подаваемого тока, где это возможно. Но не в каждом случае необходимо или возможно реализовывать все из этих мер, так как реализация этих мер зависит от оборудования.

Существуют приборы для повышения КПД электродвигателя, такие как частотные преобразователи, изменяющие скорость вращения двигателя, изменив частоту питающего напряжения, и устройства плавного пуска, ограничивающие скорость нарастания пускового тока и его максимальное значение.

В данной статье мы рассмотрим современные решения для повышения КПД двигателей с позиций экономической целесообразности и эффективности работы.

Повысить эффективность работы электродвигателя можно с помощью частотных преобразователей, которые изменяют однофазное или трехфазное напряжение с частотой 50 Гц на напряжение необходимой частоты (обычно в диапазоне от 1 Гц до 300-400 Гц, а иногда бывает и до 3000 Гц) и амплитуды. Частотные преобразователи подходят для использования в асинхронных двигателях.

Преобразователь частоты, известный также как «частотник», содержит в себе микропроцессор для управления электронными ключами и защиты оборудования, а также схемы, которые работают в качестве ключей и открывают тиристоры или транзисторы. Тиристорные преобразователи частоты более эффективны благодаря способности работать с высокими напряжениями и токами и достигать КПД до 98%, но это преимущество становится практически незаметным при небольших мощностях.

Существуют два класса преобразователей частоты, которые отличаются устройством и принципами работы:

  • Преобразователи с непосредственной связью представляют собой выпрямители. В результате отпирания тиристоров и подключения обмотки к сети формируется выходное напряжение с ограниченным диапазоном управления скоростью вращения привода и частотой 0–30 Гц. Однако такие преобразователи не подходят для оснащения мощного оборудования, регулирующего множество технологических параметров.
  • Преобразователи с промежуточным звеном постоянного тока производят двойное преобразование энергии: входное напряжение выпрямляется, затем фильтруется и сглаживается, а потом при помощи инвертора снова трансформируется в напряжение с необходимой амплитудой и частотой. Хотя такое преобразование может снижать КПД оборудования, преобразователи частоты второго типа имеют широкое применение благодаря способности давать на выходе напряжение с высокой частотой.

Одним из наиболее популярных типов преобразователей частоты являются устройства второго типа, которые обеспечивают плавную регулировку оборотов двигателей.

Статья рассказывает о различных функциональных возможностях частотных преобразователей и их соответствии целям использования.

Использование преобразователей с невысокой перегрузочной способностью и U/f-управлением чаще всего применяется для электроприводов насосов и вентиляторов, где необходимо увеличить момент двигателя на низких частотах.

Более совершенные устройства с векторным управлением регулируют не только частоту и амплитуду выходного напряжения, но и фазы тока, протекающего через обмотки статора. Они наиболее эффективны при использовании в конвейерном, прокатном, упаковочном, подъемном оборудования и прочих.

При необходимости контролируемого торможения двигателя используется функция замедления, которая может различаться в зависимости от его интенсивности. В таких случаях можно применять преобразователи с встроенным внешним блоком торможения и тормозным резистором или рекуперативным блоком торможения. Режим динамического торможения позволяет переводить механическую энергию в электрическую и либо рассеивать ее в тепло на сопротивлении тормозного резистора, либо возвращать энергию в сеть посредством рекуперации. Это решение актуально для станкового и конвейерного оборудования.

Частотные преобразователи с обратной связью обеспечивают более точное поддержание постоянной скорости вращения при переменной нагрузке, что повышает качество технологического процесса в замкнутых системах. Такие устройства широко используются в робототехнике, дерево- и металлообработке, а также в системах высокоточного позиционирования.

В последние годы цены на частотные преобразователи подвержены высокой волатильности, как отмечают финансисты. За прошедший год-полтора их стоимость значительно выросла. Такой рост цен можно объяснить не только колебаниями валютного курса, но и другими факторами.

В 2021 году стоимость частотных преобразователей мощностью 90 кВт от российских и зарубежных производителей варьировалась в районе от 200 до 700 тысяч рублей, в зависимости от производителя.

Достоинства и недостатки преобразователя частоты

Описанный выше принцип работы преобразователя частоты для асинхронного двигателя обладает несколькими неоспоримыми достоинствами. Прежде всего, он обеспечивает снижение расхода электроэнергии, благодаря чему удается повысить коэффициент полезного действия машины. Кроме того, такая система гарантирует плавный запуск привода, высокую точность регулировки и увеличение пускового момента. Важным преимуществом является также стабилизация скорости вращения при переменной нагрузке.

Однако стоит заметить, что у «частотника» есть и свои недостатки. К ним можно отнести относительно высокую стоимость установки, а также возможное создание электромагнитных помех в процессе работы.

Существуют устройства плавного пуска (УПП), которые используются для обеспечения плавного запуска, разгона и остановки электродвигателя. Они ограничивают скорость увеличения пускового тока в течение определенного времени. Однако традиционные устройства плавного пуска не способны повысить КПД и могут применяться только для управления приводами с небольшой нагрузкой на валу.

Контроллеры-оптимизаторы - это разновидности УПП, которые позволяют повысить энергоэффективность двигателей. Они согласовывают крутящий момент с моментом нагрузки и способствуют снижению потребления электроэнергии на минимальных нагрузках на 30–40%. Контроллеры-оптимизаторы предназначены для приводов, которые не нуждаются в изменении числа оборотов двигателя.

Например, эскалатор потребляет большое количество энергии, и для снижения энергопотребления при помощи преобразователя частоты, нужно уменьшить скорость эскалатора. Однако, это невозможно, так как это увеличит время подъема пассажиров. Контроллеры-оптимизаторы позволяют снизить энергопотребление без изменения скорости электропривода в тех случаях, когда он недогружен.

Контроллеры-оптимизаторы электродвигателя являются регуляторами напряжения питания, которые контролируют фазы тока и напряжения. Они гарантируют полное управление приводом на всех стадиях работы и предотвращают повышенное и пониженное напряжение, перегрузку, обрывы или нарушение чередования фаз. Путем изменения напряжения питания двигателя, контроллеры-оптимизаторы согласовывают значение механического момента, который развивает электродвигатель, с значением механического момента нагрузки на его валу. Последнее позволяет увеличить коэффициент мощности, а скорость вращения ротора электродвигателя остается неизменной.

Данное оборудование является самодостаточным и дополнительных устройств не требует. Кроме того, контроллер-оптимизатор обеспечивает прекращение отбора мощности во время динамической нагрузки, когда тиристоры закрыты и не проводят электрический ток. Управляющие импульсы открывают тиристоры при поступлении и закрывают переход тока через ноль. Отметим, что скорость реакции контроллера-оптимизатора на изменение нагрузки составляет сотые доли секунды.

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *